A Virtual Community of Practice to Support Faculty Efforts to Adopt Research-based Instructional Approaches

Stephanie Farrell
Chemical Engineering
Rowan University

Stephen Krause
School for Engineering Matter, Transport and Energy
Arizona State University
Motivation for VCP project

• Major transformation in engineering education needed to meet demands of global workforce

• Better fundamentals; real world thinking, problem solving skills; communications; ethics, environmental social issues; coverage of emerging areas...

• Do not increase credits or time to complete degree

• ABET, NAE, NSF, IChemE, Engineers Australia...
Motivation for VCP Project

• Change the way we teach - bridge the gap between teaching and research
• Resistance to adopting research-based pedagogy – why?
 – Need for positive climate for good teaching
 – Lack of time
 – Fear of student resistance
 – Lack of mentoring or support
• Motivation must guide faculty development efforts
 – Must overcome resistance
Overview

• Background
 – VCP
 – Faculty Development
 – Instructional Approaches

• VCP Model
 – Structure
 – Technology
 – Implementation

• Results
• Impact
VCP

Community
- Social structure assists creation and sharing of knowledge

Virtual
- Online
- Synchronous (real time) collaboration
- Asynchronous repository/archive

Practice
- Aggregation of relevance
- Tips, pointers, insights, opinions
- Support to achieve goals
Faculty Development Effort

Facilitators

– Expertise in engineering and pedagogy
– Identify and target need and interests of the participants
– Provide choices of methods of implementation
– Model the recommended pedagogy

Participants

– Have opportunities to practice the new content in a supported environment
– Are actively engaged throughout process

Tier 1: Leadership VCP

- 2 Meta-Trainers
- 2 VCP Leaders (Civil E)
- 2 VCP Leaders (ECE)
- 2 VCP Leaders (Mech E)
- 2 VCP Leaders (ChE/Mat)
- 2 VCP Leaders (Computer E)

Tier 2: Faculty VCP

- Pair of Discipline Leaders
- Faculty Participants (20)
LVCP

- 6 weekly sessions, 1.5 hours
- Training/modeling of research-based approaches
- Reflection, planning and practice
- Plan of action and materials for leading FVCP
FVCP in ChE and Materials Eng

- 18 participants from all over USA
- Fall semester - 8 sessions, weekly, 1.5 hours
 - Focus on pedagogy and instructional strategies
 - Faculty developed a plan to implement new approaches in a course in the spring
- Spring semester - 8 sessions, every two weeks, 1.5 hours
 - Support for faculty as they implement new approaches
 - Faculty-driven, open discussion on successes and challenges
Technology

Synchronous
 • Adobe Connect web conferencing tool
 – Real time collaboration
 – Group discussion
 – “Breakout rooms”
 – Collaboration capabilities – file/screen share, notes, whiteboard, polling...

Asynchronous
 • Open-source web portal archive tool
 – Communications
 – Materials
 – Resources
Research-based Instruction

Pedagogy
- Bloom’s Taxonomy
- Flipped classroom
- Process Oriented Guided Inquiry Learning (POGIL)
- Small group discussion
- Online textbook annotation
- Peer instruction
- Group-based medical case studies
- Game-based pedagogy

Courses
- Physics Materials I and II
- Error Analysis and Design Optimization
- Materials Science and Engineering
- Materials for Energy Storage
- Heat and Mass Transfer, Fluid Mechanics
- Systems Physiology
Participant Results

- Better attendance
- Better student engagement
- Increased student motivation
- Better exam performance
- Better teacher ratings
- Faculty teaching award
- Community of Practice at home institution
VCP Results

In all classes

<table>
<thead>
<tr>
<th>Objective</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloom</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Objectives</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Active</td>
<td>2.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Cooperative</td>
<td>2.4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Never
Results

• Faculty perception of motivation
• Ratings of 11 behaviors associated with student motivation
 – On time, interested, use critical thinking, want to perform well, seek help outside class, non-disruptive, participation, apply material, attendance, reading outside class
• 37-70%, normalized gain for each response for 10 out of 11 behaviours
 – Exam performance could not be compared because exams increased in difficulty
Results

• Sustainable community
 – Participants continue to revise courses
 – Asynchronous portal
 – Email
 – Panel session at ASEE National conference in June
 – Participant established a CP at her institution
Conclusions

- Cost-effective, time efficient model for faculty participants
- Use of research-based pedagogy increased
- Faculty perceived greater student motivation
- Keys to success
 - Two-tiered structure
 - Asynchronous and synchronous environments
 - Time-efficiency
 - Community support
 - Peer support during implementation
Acknowledgements

• **NSF Grant DUE 1224217**

• **Participants**: Amber Genau, Cynthia Lo, Ioulia Valla, Christina Wagstrom, Nancy Ruzycki, Rich Eitel, Brittany Neslon-Cheeseman, Daniel Lepek, Jorge Gatica, Laura Ford, Paul Golter, Shannon Ciston, Steve Yalisove, Cheryl Bodnar, Joseph Shih, Lindsay Croneal, Peter Liu, Wujie Zhang